In modern production processes, the need for precision monitoring of the ambient conditions during the production process, and to regulate these within a specific range where necessary, is becoming increasingly common. Sectors typically having this requirement include semi-conductor production or manufacturing in the food and pharmaceutical industry. With industrial production processes as well (e.g. drying processes), it is often necessary to monitor the ambient conditions during the process with precision. "Ambient conditions" generally used to refer to monitoring and regulating the ambient temperature, but increasingly also relates to the ambient or process humidity (e.g. relative humidity). Where values such as the en/kalibrieren/messgroessen/temperatur/temperature or relative air humidity affect production processes (otherwise, monitoring would simply be a luxury), the need for periodic, documented calibration of the relevant measuring equipment as part of a measuring equipment monitoring system is immediately apparent. To calibrate temperature measurement accuracy, there is an established procedure and a variety of devices on the market (temperature calibrators) that can be used for calibrating temperature measuring equipment.
The situation for calibrating measurement values for "relative humidity" or gas humidity in general is rather different. On the one hand, the potential measurement uncertainties are considerably greater than would intuitively be expected in comparison to temperature measurement uncertainties, and on the other hand, the options for humidity calibration are much more important in terms of usage or they often do not provide the anticipated level of accuracy.